Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated.
نویسندگان
چکیده
The Bacillus subtilis genome encodes two multidrug efflux transporters sharing 51% sequence identity: Bmr, described previously, and Blt, described here. Overexpression of either transporter in B. subtilis leads to a similar increase in resistance to ethidium bromide, rhodamine and acridine dyes, tetraphenylphosphonium, doxorubicin, and fluoroquinolone antibiotics. However, Blt differs widely from Bmr in its expression pattern. Under standard cultivation conditions, B. subtilis expresses Bmr but Blt expression is undetectable. We have previously shown that Bmr expression is regulated by BmrR, a member of the family of MerR-like transcriptional activators. Here we show that blt transcription is regulated by another member of the same family, BltR. The DNA-binding domains of BmrR and BltR are related, but their putative inducer-binding domains are dissimilar, suggesting that Bmr and Blt are expressed in response to different inducers. Indeed, rhodamine, a substrate of Bmr and Blt and a known inducer of Bmr expression, does not induce Blt expression. Blt expression has been observed only in B. subtilis, carrying mutation acfA, which, as we show here, alters the sequence of the blt gene promoter. Unlike bmr, which is transcribed as a monocistronic mRNA, blt is cotranscribed with a downstream gene encoding a putative acetyltransferase. Overall, the differences in transcriptional control and operon organization between bmr and blt suggest that the transporters encoded by these genes have independent functions involving the transport of distinct physiological compounds.
منابع مشابه
The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism
Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-posit...
متن کاملComplementary metal ion specificity of the metal-citrate transporters CitM and CitH of Bacillus subtilis.
Citrate uptake in Bacillus subtilis is stimulated by a wide range of divalent metal ions. The metal ions were separated into two groups based on the expression pattern of the uptake system. The two groups correlated with the metal ion specificity of two homologous B. subtilis secondary citrate transporters, CitM and CitH, upon expression in Escherichia coli. CitM transported citrate in complex ...
متن کاملStudy of Environmental Stress Signaling in Bacillus subtilis via components of RsbR paralogues
Bacillus subtilis has found to respond the signals of environmental and metabolic stress by inducing over 40 general stress genes which are under the control of the sigma B transcription factor. Sigma B is an alternative sigma-factor in Bacillus subtilis. It mediates the response of the cell to a variety of physical insults. General stress response of Bacillus subtilis is regulated directly by ...
متن کاملRegulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis.
Transport systems for C4-dicarboxylates, such as malate, fumarate and succinate, are poorly understood in Gram-positive bacteria. The whole genome sequence of Bacillus subtilis revealed two genes, ydbE and ydbH, whose deduced products are highly homologous to binding proteins and transporters for C4-dicarboxylates in Gram-negative bacteria. Between ydbE and ydbH, genes ydbF and ydbG encoding a ...
متن کاملAn alternative bacterial expression system using Bacillus pumilus SG2 chitinase promoter
Background: Chitin is an abundant natural polysaccharide found in fungi, algae, and exoskeleton of insects. Several bacterial species are capable of utilizing chitin as their carbon source. These bacteria produce chitinases for degradation of chitin into N-acetyl-D-glucosamine. So far, regulation of the chitinase encoding genes has been studied in different bacterial species. Among Bacillus spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 177 14 شماره
صفحات -
تاریخ انتشار 1995